Liver Disorders Associated with Metabolic Imbalances in Dairy Cows


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Veterinary Clinics: Food Animal Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Gross J.
        • van Dorland H.A.
        • Bruckmaier R.M.
        • et al.
        Performance and metabolic profile of dairy cows during a lactational and deliberately induced negative energy balance with subsequent realimentation.
        J Dairy Sci. 2011; 94: 1820-1830
        • Bauman D.E.
        • Currie W.B.
        Partitioning of nutrients during pregnancy and lactation - a review of mechanisms involving homeostasis and homeorhesis.
        J Dairy Sci. 1980; 63: 1514-1529
        • Lean I.J.
        • Van Saun R.
        • DeGaris P.J.
        Energy and protein nutrition management of transition dairy cows.
        Vet Clin N Am-food A. 2013; 29: 337
        • Contreras G.A.
        • Strieder-Barboza C.
        • De Koster J.
        Symposium review: Modulating adipose tissue lipolysis and remodeling to improve immune function during the transition period and early lactation of dairy cows.
        J Dairy Sci. 2018; 101: 2737-2752
        • McFadden J.W.
        Review: Lipid biology in the periparturient dairy cow: Contemporary perspectives.
        Animal. 2020; 14: s165-s175
        • Ingvartsen K.L.
        Feeding- and management-related diseases in the transition cow: Physiological adaptations around calving and strategies to reduce feeding-related diseases.
        Anim Feed Sci Technol. 2006; 126: 175-213
        • Melendez P.
        • Risco C.A.
        Reproduction, events and management pregnancy: periparturient disorders.
        Reference Module in Food Sciences. First Edition. 2016; : 1-7
        • Bradford B.J.
        • Yuan K.
        • Farney J.K.
        • et al.
        Invited review: Inflammation during the transition to lactation: New adventures with an old flame.
        J Dairy Sci. 2015; 98: 6631-6650
        • Drackley J.K.
        Biology of dairy cows during the transition period: the final frontier?.
        J Dairy Sci. 1999; 82: 2259-2273
        • Santos J.E.P.
        • Rutigliano H.M.
        • Sá Filho M.F.
        Risk factors for resumption of postpartum cyclicity and embryonic survival in lactating dairy cows.
        Anim Reprod Sci. 2009; 110: 207-221
        • Ospina P.A.
        • McArt J.
        • Overton T.
        • et al.
        Using nonesterified fatty acids and β-hydroxybutyrate concentrations during the transition period for herd-level monitoring of increased risk of disease and decreased reproductive and milking performance.
        Vet Clin North Am Food Anim Pract. 2013; 29: 387-412
        • Ribeiro E.S.
        • Lima F.S.
        • Greco L.F.
        • et al.
        Prevalence of periparturient diseases and effects on fertility of seasonally calving grazing dairy cows supplemented with concentrates.
        J Dairy Sci. 2013; 96: 5682-5697
        • Drackley J.K.
        • Overton T.R.
        • Douglas G.N.
        Adaptations of glucose and long-chain fatty acid metabolism in liver of dairy cows during the periparturient period.
        J Dairy Sci. 2001; 84: E100-E112
        • Herdt T.H.
        Gastrointestinal physiology and metabolism. Postabsorptive nutrient utilization.
        in: Cunningham Textbook of Veterinary physiology. Third Edition. WB Saunders, Philadelphia2002: 303-322
        • Ingvartsen K.L.
        • Andersen J.B.
        Integration of metabolism and intake regulation: a review focusing on periparturient animals.
        J Dairy Sci. 2000; 83: 1573-1597
        • De Koster J.D.
        • Opsomer G.
        Insulin resistance in dairy cows.
        Vet Clin Food Anim. 2013; 29: 299-322
        • White H.M.
        ADSA Foundation Scholar Award: Influencing hepatic metabolism: Can nutrient partitioning be modulated to optimize metabolic health in the transition dairy cow?.
        J Dairy Sci. 2020; 103: 6741-6750
        • Bobe G.
        • Young J.W.
        • Beitz D.C.
        Invited review: Pathology, etiology, prevention, and treatment of fatty liver in dairy cows.
        J Dairy Sci. 2004; 87: 3105-3124
        • Duffaut C.
        • Zakaroff-Girard A.
        • Bourlier V.
        • et al.
        Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators.
        Arterioscler Thromb Vasc Biol. 2009; 29: 1608-1614
        • De Smet S.
        • Raes K.
        • Demeyer D.
        Meat fatty acid composition as affected by fatness and genetic factors: A review.
        Anim Res. 2004; 53: 81-98
        • Ebbert J.O.
        • Jensen M.D.
        Fat depots, free fatty acids and dyslipidemia.
        Nutrients. 2013; 5: 498-508
        • Locher L.F.
        • Meyer N.
        • Weber E.M.
        • et al.
        Hormone-sensitive lipase protein expression and extent of phosphorylation in subcutaneous and retroperitoneal adipose tissues in the periparturient dairy cow.
        J Dairy Sci. 2011; 94: 4514-4523
        • Hostens M.
        • Fievez V.
        • Leroy J.L.M.R.
        • et al.
        The fatty acid profile of subcutaneous and abdominal fat in dairy cows with left displacement of the abomasum.
        J Dairy Sci. 2013; 95: 3756-3765
        • Tchkonia T.
        • Thomou T.
        • Zhu Y.
        • et al.
        Mechanisms and metabolic implications of regional differences among fat depots.
        Cell Metab. 2013; 17: 644-656
        • Melendez P.
        • Poock S.
        • Pithua P.
        • et al.
        Genome-wide study to detect SNPs associated with visceral and subcutaneous fat deposition in Holstein dairy cows.
        Animal. 2019; 13: 487-494
        • Angeli E.
        • Barcarolo D.
        • Durante L.
        • et al.
        Effect of precalving body condition score on insulin signaling and hepatic inflammatory state in grazing dairy cattle.
        Domest Anim Endocrinol. 2021; 76: 106621
        • Mann S.
        • Leal Yepes F.A.
        • Wakshlag J.J.
        • et al.
        The effect of different treatments for early-lactation hyperketonemia on liver triglycerides, glycogen, and expression of key metabolic enzymes in dairy cattle.
        J Dairy Sci. 2018; 101: 1626-1637
        • Fry M.M.
        • Yao B.
        • Ríos C.
        • et al.
        Diagnostic performance of cytology for assessment of hepatic lipid content in dairy cattle.
        J Dairy Sci. 2018; 101: 1379-1387
        • McCarthy M.M.
        • Piepenbrink M.S.
        • Overton T.R.
        Associations between hepatic metabolism of propionate and palmitate in liver slices from transition dairy cows.
        J Dairy Sci. 2015; 98: 7015-7024
        • Kalaitzakis E.
        • Panousis N.
        • Roubies N.
        • et al.
        Clinicopathological evaluation of downer dairy cows with fatty liver.
        Can Vet J. 2010; 51: 615-622
        • Melendez P.
        • Whitney M.
        • Williams F.
        • et al.
        Technical note: Evaluation of fine needle aspiration cytology for the diagnosis of fatty liver in dairy cattle.
        J Dairy Sci. 2018; 101: 4483-4490
        • Haudum A.
        • Starke A.
        • Beyerbach M.
        • et al.
        Ultrasonographic assessment of liver dimensions in dairy cows with different hepatic triacylglycerol content.
        J Anim Sci. 2011; 89: 1392-1400
        • Swecker Jr., W.S.
        Trace mineral feeding and assessment.
        Vet Clin North Am Food Anim Pract. 2014; 30: 671-688
        • Rafia S.
        • Taghipour-Bazargani T.
        • Asadi F.
        • et al.
        Periparturition alterations to liver ultrasonographic echotexture and fat mobilization parameters in clinically healthy Holstein cows.
        Vet Res Commun. 2011; 35: 531-540
        • Starke A.
        • Schmidt S.
        • Haudum A.
        • et al.
        Evaluation of portal blood flow using transcutaneous and intraoperative Doppler ultrasonography in dairy cows with fatty liver.
        J Dairy Sci. 2011; 94: 2964-2971
        • Weijers G.
        • Starke A.
        • Thijssen J.M.
        • et al.
        Transcutaneous vs. intraoperative quantitative ultrasound for staging bovine hepatic steatosis.
        Ultrasound Med Biol. 2012; 38: 1404-1413
        • Hoff B.
        • Cote J.
        • Steen A.
        Fine needle aspiration and liver cytology - A simple method for diagnosis and prognosis of fatty liver in cattle.
        Bov Pract. 1996; 30: 53-55
        • Weiss D.J.
        • Moritz A.
        Liver cytology.
        Vet Clin North Am Small Anim Pract. 2002; 32: 1267-1291
        • Komemushi A.
        • Kanno S.
        • Suzuki S.
        • et al.
        Evaluation of an aspiration-type semiautomatic cutting biopsy needle.
        Minim Invasive Ther Allied Technol. 2015; 24: 250-252
        • McNeel A.K.
        • Reiter B.C.
        • Weigel D.
        • et al.
        Validation of genomic predictions for wellness traits in US Holstein cows.
        J Dairy Sci. 2017; 100: 9115-9124
        • Leal Yepes F.A.
        • Mann S.
        • Overton T.R.
        • et al.
        Hepatic effects of rumen-protected branched-chain amino acids with or without propylene glycol supplementation in dairy cows during early lactation.
        J Dairy Sci. 2021; 104: 10324-10337
        • Duffield T.F.
        • Rabiee A.R.
        • Lean I.J.
        A meta-analysis of the impact of monensin in lactating dairy cattle. Part 1. Metabolic effects.
        J Dairy Sci. 2008; 91: 1334-1346
        • Duffield T.F.
        • Rabiee A.R.
        • Lean I.J.
        A meta-analysis of the impact of monensin in lactating dairy cattle. Part 2. Production effects.
        J Dairy Sci. 2008; 91: 1347-1360
        • Garrett E.F.
        • Nordlund K.V.
        • Goodger
        • et al.
        A cross-sectional field study investigating the effect of periparturient dietary management on ruminal pH in early lactation dairy cows.
        J Dairy Sci. 1997; 80: 169
        • Oetzel G.R.
        Diagnosis and Management of Subacute Ruminal Acidosis in Dairy Herds.
        Vet Clin North Am Food Anim Pract. 2017; 33: 463-480
        • Monteiro H.F.
        • Faciola A.P.
        Ruminal acidosis, bacterial changes, and lipopolysaccharides.
        J Anim Sci. 2020; 98: skaa248
        • Aschenbach J.R.
        • Zebeli Q.
        • Patra A.K.
        • et al.
        Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow.
        J Dairy Sci. 2019; 102: 1866-1882
        • Tomlinson J.E.
        • Blikslager A.T.
        Interactions between lipopolysaccharide and the intestinal epithelium.
        JAVMA. 2004; 224: 1446-1452
        • Plaizier J.C.
        • Danesh Mesgaran M.
        • Derakhshani H.
        • et al.
        Review: Enhancing gastrointestinal health in dairy cows.
        Animal. 2018; 12: s399-s418
        • Kleen J.L.
        • Hooijer G.A.
        • Rehage J.
        • et al.
        Subacute ruminal acidosis (SARA): a review.
        J Vet Med A Physiol Pathol Clin Med. 2003; 50: 406-414
        • Nordlund K.V.
        • Garrett E.F.
        • Oetzel G.R.
        Herd-based rumenocentesis: a clinical approach to the diagnosis of subacute rumen acidosis. Compendium for continuing education for the practicing veterinarian.
        Food Anim. 1995; 17: s48-s56
        • Stefanska B.
        • Nowak W.
        • Komisarek J.
        • et al.
        Prevalence and consequence of subacute ruminal acidosis in Polish dairy herds.
        J Anim Physiol Anim Nutr. 2017; 101: 694-702
        • Elsasser T.H.
        • Caperna T.J.
        • Li C.J.
        • et al.
        Critical control points in the impact of the proinflammatory immune response on growth and metabolism.
        J Anim Sci. 2008; 86: E105-E125
        • Bradford B.J.
        • Mamedova L.K.
        • Minton J.E.
        • et al.
        Daily injection of tumor necrosis factor-alpha increases hepatic triglycerides and alters transcript abundance of metabolic genes in lactating dairy cattle.
        J Nutr. 2009; 139: 1451-1456
        • Spaans O.K.
        • Kuhn-Sherlock B.
        • Hickey A.
        • et al.
        Temporal profiles describing markers of inflammation and metabolism during the transition period of pasture-based, seasonal-calving dairy cows.
        J Dairy Sci. 2022; 01100: S0022-S0302
        • Russell K.E.
        • Roussel A.J.
        Evaluation of the ruminant serum chemistry profile. the veterinary clinics of North America.
        Food Anim Pract. 2007; 23: 403-v
        • Bertoni G.
        • Trevisi E.
        • Han X.
        • et al.
        Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows.
        J Dairy Sci. 2008; 91: 3300-3310
        • Overton T.R.
        • McArt J.A.A.
        • Nydam D.V.
        A 100-Year Review: Metabolic health indicators and management of dairy cattle.
        J Dairy Sci. 2017; 100: 10398-10417
        • Kornfeld J.W.
        • Baitzel C.
        • Konner A.C.
        • et al.
        Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b.
        Nature. 2013; 494: 111-115
        • Ioannidis J.
        • Donadeu F.X.
        Comprehensive analysis of blood cells and plasma identifies tissue-specific miRNAs as potential novel circulating biomarkers in cattle.
        BMC Genomics. 2018; 19: 243
        • Alisi A.
        • Da Sacco L.
        • Bruscalupi G.
        • et al.
        Mirnome analysis reveals novel molecular determinants in the pathogenesis of diet-induced nonalcoholic fatty liver disease.
        Lab Invest. 2010; 91: 283-293
        • Braun U.
        ultrasonographic examination of the reticulum, rumen, omasum, abomasum, and liver in calves.
        Vet Clin North Am Food Anim Pract. 2016; 32: 85-107
        • Shen Y.
        • Chen L.
        • Yang W.
        • et al.
        Exploration of serum sensitive biomarkers of fatty liver in dairy cows.
        Sci Rep. 2018; 8: 13574
        • Caixeta L.S.
        • Giesy S.L.
        • Krumm C.S.
        • et al.
        Fibroblast growth factor-21 (FGF21) administration to early-lactating dairy cows. II. Pharmacokinetics, whole-animal performance, and lipid metabolism.
        J Dairy Sci. 2019; 102: 11597-11608
        • Angeli E.
        • Trionfini V.
        • Gareis N.C.
        • et al.
        Protein and gene expression of relevant enzymes and nuclear receptor ofhepatic lipid metabolism in grazing dairy cattle during the transition period.
        Res Vet Sci. 2019; 123: 223-231
        • Caputo Oliveira R.
        • Erb S.J.
        • Pralle R.S.
        • et al.
        Postpartum supplementation with fermented ammoniated condensed whey altered nutrient partitioning to support hepatic metabolism.
        J Dairy Sci. 2020; 103: 7055-7067
        • Vogel L.
        • Gnott M.
        • Kröger-Koch C.
        • et al.
        Effects of abomasal infusion of essential fatty acids together with conjugated linoleic acid in late and early lactation on performance, milk and body composition, and plasma metabolites in dairy cows.
        J Dairy Sci. 2020; 103: 7431-7450
        • Bollatti J.M.
        • Zenobi M.G.
        • Barton B.A.
        • et al.
        Responses to rumen-protected choline in transition cows do not depend on prepartum body condition.
        J Dairy Sci. 2020; 103: 2272-2286