Advertisement

The Microbial Ecology of Liver Abscesses in Cattle

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Veterinary Clinics: Food Animal Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Reinhardt C.D.
        • Hubbert M.E.
        Control of liver abscesses in feedlot cattle: a review.
        The Prof Anim Scientist. 2015; 31: 101-108
        • Brown T.R.
        • Lawrence T.E.
        Association of liver abnormalities with carcass grading performance and value.
        J Anim Sci. 2010; 88: 4037-4043
        • Herrick R.T.
        • Rogers C.L.
        • McEvers T.J.
        • et al.
        Exploratory observational quantification of liver abscess incidence, specific to region and cattle type, and their associations to viscera value and bacterial flora.
        Appl Anim Sci. 2022; 38: 170-182
        • Davedow T.
        • Narvaez-Bravo C.
        • Zaheer R.
        • et al.
        Investigation of a Reduction in Tylosin on the Prevalence of Liver Abscesses and Antimicrobial Resistance in Enterococci in Feedlot Cattle.
        Front Vet Sci. 2020; 7: 90
        • Foraker B.A.
        • Frink J.L.
        • Woerner D.R.
        Invited review: a carcass and meat perspective of crossbred beef × dairy cattle.
        Transl Anim Sci. 2022; 6: txac027
        • Eastwood L.C.
        • Boykin C.A.
        • Harris M.K.
        • et al.
        National Beef Quality Audit-2016: Transportation, mobility, and harvest-floor assessments of targeted characteristics that affect quality and value of cattle, carcasses, and by-products. Article.
        Translational Anim Sci. 2017; 1: 229-238
      1. BCRC. Canadian Cattlemen’s Association. National Beef Quality Audit - 2016-17 Plant Carcass Audit. Beef Cattle Research Council – Canadian Cattlemen’s Association.
        • Amachawadi R.G.
        • Nagaraja T.G.
        Liver abscesses in cattle: A review of incidence in Holsteins and of bacteriology and vaccine approaches to control in feedlot cattle.
        J Anim Sci. 2016; 94: 1620-1632
        • Nagaraja T.G.
        • Lechtenberg K.F.
        Liver abscesses in feedlot cattle.
        Vet Clin North Am Food Anim Pract. 2007; 23 (ix): 351-369
      2. USDA-NAHMS. Feedlot 2011 - Part III: Trends in Health and Management Practices on U.S. Feedlots, 1994–2011. USDA–APHIS–VS–CEAH, NAHMS Fort Collins, CO. 2013;#637.0413.
      3. USDA-NAHMS. Feedlot 2011 - Part IV: Health and Health Management on U.S. Feedlots with a Capacity of 1,000 or More Head. USDA–APHIS–VS–CEAH–NAHMS Fort Collins, CO. 2013.;(#638.0913.
        • Garry F.
        • McConnel C.
        Indigestion in ruminants.
        in: Smith B.P. Van Metre D.C. Pusterla N. Large animal Internal medicine. 6th. edition. Elsevier, Amsterdam, Netherlands2020
        • Kleen J.L.
        • Hooijer G.A.
        • Rehage J.
        • et al.
        Subacute ruminal acidosis (SARA): a review.
        J Vet Med A Physiol Pathol Clin Med. 2003; 50https://doi.org/10.1046/j.1439-0442.2003.00569.x
        • Calkins H.E.
        • Dewey M.L.
        Quantitative analysis of the microflora of a bovine liver abscess.
        J Bacteriol. 1968; 96https://doi.org/10.1128/jb.96.4.1439-1440.1968
        • Newsom I.E.
        A bacteriologic study of liver abscesses in cattle.
        J Infect Dis. 1938; 63: 232-233
        • Tadepalli S.
        • Narayanan S.K.
        • Stewart G.C.
        • et al.
        Fusobacterium necrophorum: a ruminal bacterium that invades liver to cause abscesses in cattle.
        Anaerobe. 2009; 15https://doi.org/10.1016/j.anaerobe.2008.05.005
        • Jensen R.
        • Frey P.R.
        • Cross F.
        • et al.
        Telangiectasis, sawdust, and abscesses in the livers of beef cattle.
        J Am Vet Med Assoc. 1947; : 110
        • Jensen R.
        • Deane H.M.
        • Cooper L.J.
        • et al.
        The rumenitis-liver abscess complex in beef cattle.
        Am J Vet Res. 1954; 15: 202-216
        • Lechtenberg K.F.
        • Nagaraja T.G.
        • Leipold H.W.
        • et al.
        Bacteriologic and histologic studies of hepatic abscesses in cattle.
        Am J Vet Res. 1988; 49: 58-62
        • Tan Z.L.
        • Nagaraja T.G.
        • Chengappa M.M.
        Fusobacterium necrophorum infections: Virulence factors, pathogenic mechanism and control measures.
        Vet Res Commun. 1996; 20: 113-140
        • Nagaraja T.G.
        • Narayanan S.K.
        • Stewart G.C.
        • et al.
        Fusobacterium necrophorum infections in animals: Pathogenesis and pathogenic mechanisms.
        Anaerobe. 2005; 11: 239-246
        • Jost B.H.
        • Billington S.J.
        Arcanobacterium pyogenes: molecular pathogenesis of an animal opportunist.
        Antonie Van Leeuwenhoek. 2005; 88: 87-102
        • McFadyean J.
        Disseminated necrosis of the liver of the ox and sheep.
        J Compar Pathol Therap. 1891; 4: 46-53
        • Weinroth M.D.
        • Carlson C.R.
        • Martin J.N.
        • et al.
        Rapid Communication: 16S ribosomal ribonucleic acid characterization of liver abscesses in feedlot cattle from three states in the United States1.
        J Anim Sci. 2017; 95: 4520-4525
        • Stotz M.K.
        • Henry D.D.
        • Crossland W.L.
        Characterization of bacterial DNA identified in abscessed and non-abscessed bovine hepatic tissue at the time of harvest.
        J Anim Sci. 2021; 99: skab280
        • Amachawadi R.G.
        • Tom W.A.
        • Hays M.P.
        • et al.
        Bacterial community analysis of purulent material from liver abscesses of crossbred cattle and Holstein steers fed finishing diets with or without tylosin.
        J Anim Sci. 2021; 99: skab076
        • Pinnell L.J.
        • Whitlow C.W.
        • Huebner K.L.
        • et al.
        Not All Liver Abscesses Are Created Equal: The Impact of Tylosin and Antibiotic Alternatives on Bovine Liver Abscess Microbial Communities and a First Look at Bacteroidetes-Dominated Communities. Original Research.
        Front Microbiol. 2022; : 13doihttps://doi.org/10.3389/fmicb.2022.882419
        • Amachawadi R.G.
        • Nagaraja T.G.
        • Fenwick B.W.
        First Report of Anaerobic Isolation of Salmonella enterica from Liver Abscesses of Feedlot Cattle.
        J Clin Microbiol. 2015; 53: 3100-3101
        • Fredricks D.N.
        • Relman D.A.
        Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates.
        Clin Microbiol Rev. 1996; 9: 18-33
        • Nelson A.
        • De Soyza A.
        • Perry J.D.
        • et al.
        Polymicrobial challenges to Koch's postulates: ecological lessons from the bacterial vaginosis and cystic fibrosis microbiomes.
        Innate Immun. 2012; 18: 774-783
        • Brogden K.A.
        • Guthmiller J.M.
        Polymicrobial diseases, a concept whose time has come.
        ASM News. 2003; 69: 69-73
        • Gray N.D.
        • Head I.M.
        Microbial ecology.
        in: Jorgensen S.E. Fath B.D. Encyclopedia of Ecology. Elsevier Science, Amsterdam, Netherlands2008: 2357-2368
        • Antiabong J.F.
        • Boardman W.
        • Ball A.S.
        What can we learn from the microbial ecological interactions associated with polymicrobial diseases?.
        Vet Immunol Immunopathol. 2014; 158: 30-36
        • Sisson S.
        • Grossman J.D.
        • Getty R.
        Sisson and Grossman’s the anatomy of the domestic animals.
        5th edition. Saunders, Amsterdam, Netherlands1975
        • Sanz-Fernandez M.V.
        • Daniel J.B.
        • Seymour D.J.
        • et al.
        Targeting the Hindgut to Improve Health and Performance in Cattle.
        Animals (Basel). 2020; 10https://doi.org/10.3390/ani10101817
        • Gressley T.F.
        • Hall M.B.
        • Armentano L.E.
        Ruminant Nutrition Symposium: Productivity, digestion, and health responses to hindgut acidosis in ruminants.
        J Anim Sci. 2011; 89: 1120-1130
        • Matsushima J.
        • Dowe T.W.
        • Adams C.H.
        Effect of aureomycin in preventing liver abscess in cattle.
        Proc Soc Exp Biol Med. 1954; 85: 18-20
        • Flint J.C.
        • Jensen R.
        The effect of chlortetracycline, fed continuously during fattening, on the incidence of liver abscesses in beef cattle.
        Am J Vet Res. 1958; 19: 830-832
        • Weissend C.J.
        Effect of tylosin exposure or exclusion on liver abscess prevalence, fecal pathogen populations, and the microflora of finished beef products from feedlot cattle.
        The. Ph.D. Colorado State University, Fort Collins, CO2018 (Available at:)
        • Walter L.A.
        • Brown M.
        • Hagenmaier J.
        • et al.
        Evaluation of the strategic use of Tylan® to control liver abscess condemnation in finishing beef cattle. Technical Report USBBUTPX00155.
        Elanco Animal Health, Greenfield, IN2018
        • Holland B.
        • Word A.
        • Defoor P.
        • et al.
        The effect of removing tylosin from finishing diets with increasing roughage concentration on growth performance, carcass characteristics, and prevalence of liver abscesses of finishing cattle.
        J Anim Sci. 2018; 96: 406
      4. FDA. Animal Drugs @ FDA. Accessed 2020.
        • Thomas M.
        • Webb M.
        • Ghimire S.
        • et al.
        Metagenomic characterization of the effect of feed additives on the gut microbiome and antibiotic resistome of feedlot cattle.
        Sci Rep. 2017; 7: 12257
        • Coe M.L.
        • Nagaraja T.G.
        • Sun Y.D.
        • et al.
        Effect of virginiamycin on ruminal fermentation in cattle during adaptation to a high concentrate diet and during an induced acidosis.
        J Anim Sci. 1999; 77: 2259-2268
        • Nagaraja T.G.
        • Sun Y.
        • Wallace N.
        • et al.
        Effects of tylosin on concentrations of Fusobacterium necrophorum and fermentation products in the rumen of cattle fed a high-concentrate diet.
        Am J Vet Res. 1999; 60: 1061-1065
        • Schierwagen R.
        • Alvarez-Silva C.
        • Madsen M.S.A.
        • et al.
        Circulating microbiome in blood of different circulatory compartments.
        Gut. 2019; 68: 578
        • Langworth B.F.
        Fusobacterium necrophorum: its characteristics and role as an animal pathogen.
        Bacteriol Rev. 1977; 41: 373-390
        • Robinson T.
        • Jasper D.
        • Guilbert H.
        The isolation of Spherophorus necrophorus from the rumen together with some feed lot data on abscess and telangiectasis.
        J Anim Sci. 1951; 10: 733-741
        • Tan Z.L.
        • Nagaraja T.G.
        • Chengappa M.M.
        Selective enumeration of Fusobacterium necrophorum from the bovine rumen.
        Appl Environ Microbiol. 1994; 60: 1387-1389
        • Berg J.N.
        • Scanlan C.M.
        Studies of Fusobacterium necrophorum from bovine hepatic abscesses: biotypes, quantitation, virulence, and antibiotic susceptibility.
        Am J Vet Res. 1982; 43: 1580-1586
        • Takayama Y.
        • Kanoe M.
        • Maeda K.
        • et al.
        Adherence of Fusobacterium necrophorum subsp. necrophorum to ruminal cells derived from bovine rumenitis.
        Lett Appl Microbiol. 2000; 30: 308-311
        • Narayanan S.
        • Nagaraja T.G.
        • Wallace N.
        • et al.
        Biochemical and ribotypic comparison of Actinomyces pyogenes and A pyogenes-like organisms from liver abscesses, ruminal wall, and ruminal contents of cattle.
        Am J Vet Res. 1998; 59: 271-276
        • Henderson G.
        • Cox F.
        • Ganesh S.
        • et al.
        Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range.
        Sci Rep. 2015; 5: 14567
        • Pinnell L.J.
        • Reyes A.A.
        • Wolfe C.A.
        • et al.
        Bacteroidetes and Firmicutes Drive Differing Microbial Diversity and Community Composition Among Micro-Environments in the Bovine Rumen. Original Research.
        Front Vet Sci. 2022; 9https://doi.org/10.3389/fvets.2022.897996
        • Stockler R.M.
        • Hallowell H.
        • Higgins K.V.
        • et al.
        Characterization and Comparison of the Rumen Luminal and Epithelial Microbiome Profiles Using Metagenomic Sequencing Technique. Original Research.
        Front Vet Sci. 2022; 9https://doi.org/10.3389/fvets.2022.799063
        • Deusch S.
        • Camarinha-Silva A.
        • Conrad J.
        • et al.
        A Structural and Functional Elucidation of the Rumen Microbiome Influenced by Various Diets and Microenvironments. Original Research.
        Front Microbiol. 2017; 8https://doi.org/10.3389/fmicb.2017.01605
        • Lengowski M.B.
        • Witzig M.
        • Möhring J.
        • et al.
        Effects of corn silage and grass silage in ruminant rations on diurnal changes of microbial populations in the rumen of dairy cows.
        Anaerobe. 2016; 42: 6-16
        • Brulc J.M.
        • Antonopoulos D.A.
        • Miller M.E.B.
        • et al.
        Gene-Centric Metagenomics of the Fiber-Adherent Bovine Rumen Microbiome Reveals Forage Specific Glycoside Hydrolases.
        Proc Natl Acad Sci U S A. 2009; 106: 1948-1953
        • Abbas W.
        • Keel B.N.
        • Kachman S.D.
        • et al.
        Rumen epithelial transcriptome and microbiome profiles of rumen epithelium and contents of beef cattle with and without liver abscesses.
        J Anim Sci. 2020; 98
        • Chopyk D.M.
        • Grakoui A.
        Contribution of the Intestinal Microbiome and Gut Barrier to Hepatic Disorders.
        Gastroenterology. 2020; 159: 849-863
        • Wang R.
        • Tang R.
        • Li B.
        • et al.
        Gut microbiome, liver immunology, and liver diseases.
        Cell Mol Immunol. 2021; 18: 4-17
        • Tripathi A.
        • Debelius J.
        • Brenner D.A.
        • et al.
        The gut–liver axis and the intersection with the microbiome.
        Nat Rev Gastroenterol Hepatol. 2018; 15: 397-411
        • Stärkel P.
        • Schnable B.
        Bidirectional communication between liver and gut during alcoholic liver disease.
        Semin Liver Dis. 2016; 36: 331-339
        • Di Tommaso N.
        • Gasbarrini A.
        • Ponziani F.R.
        Intestinal Barrier in Human Health and Disease.
        Int J Environ Res Public Health. 2021; 18https://doi.org/10.3390/ijerph182312836
        • Massier L.
        • Blüher M.
        • Kovacs P.
        • et al.
        Impaired Intestinal Barrier and Tissue Bacteria: Pathomechanisms for Metabolic Diseases.
        Front Endocrinol. 2021; 12https://doi.org/10.3389/fendo.2021.616506
        • Kinashi Y.
        • Hase K.
        Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity.
        Front Immunol. 2021; 12https://doi.org/10.3389/fimmu.2021.673708
        • Turner J.R.
        Intestinal mucosal barrier function in health and disease.
        Nat Rev Immunol. 2009; 9: 799-809
        • Hu Y.J.
        • Wang Y.D.
        • Tan F.Q.
        • et al.
        Regulation of paracellular permeability: factors and mechanisms.
        Mol Biol Rep. 2013; 40https://doi.org/10.1007/s11033-013-2724-y
        • Regoli M.
        • C. B
        • Bertelli E.
        • et al.
        Uptake of a gram-positive bacterium (Streptococcus pneumoniae R36a) by the M cells of rabbit Peyer's patches.
        Ann Anat. 1995; 177https://doi.org/10.1016/S0940-9602(11)80057-9
        • Guerville M.
        • Boudry G.
        Gastrointestinal and hepatic mechanisms limiting entry and dissemination of lipopolysaccharide into the systemic circulation.
        Am J Physiol Gastrointest Liver Physiol. 2016; 311https://doi.org/10.1152/ajpgi.00098.2016
        • Clark E.
        • Hoare C.
        • J. T-H
        • et al.
        Interferon gamma induces translocation of commensal Escherichia coli across gut epithelial cells via a lipid raft-mediated process.
        Gastroenterology. 2005; 128https://doi.org/10.1053/j.gastro.2005.01.046
        • Llopis M.
        • Cassard A.M.
        • Wrzosek L.
        • et al.
        Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease.
        Gut. 2016; 65: 830
        • Lang S.
        • Fairfied B.
        • Gao B.
        • et al.
        Changes in the fecal bacterial microbiota associated with disease severity in alcoholic hepatitis patients.
        Gut Microbes. 2020; 12: 1785251
        • Alferink L.J.M.
        • Radjabzadeh D.
        • Erler N.S.
        • et al.
        Microbiomics, Metabolomics, Predicted Metagenomics, and Hepatic Steatosis in a Population-Based Study of 1,355 Adults.
        Hepatology. 2021; 73: 968-982https://doi.org/10.1002/hep.31417
        • Loomba R.
        • Seguritan V.
        • Li W.
        • et al.
        Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease.
        Cell Metab. 2017; 25: 1054-1062.e5
        • Ponziani F.R.
        • Bhoori S.
        • Castelli C.
        • et al.
        Hepatocellular Carcinoma Is Associated With Gut Microbiota Profile and Inflammation in Nonalcoholic Fatty Liver Disease.
        Hepatology. 2019; 69: 107-120
        • Ren Z.
        • Li A.
        • Jiang J.
        • et al.
        Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma.
        Gut. 2019; 68: 1014
        • Qin N.
        • Yang F.
        • Li A.
        • et al.
        Alterations of the human gut microbiome in liver cirrhosis.
        Nature. 2014; 513: 59-64
        • Bajaj J.S.
        • Heuman D.M.
        • Hylemon P.B.
        • et al.
        Altered profile of human gut microbiome is associated with cirrhosis and its complications.
        J Hepatol. 2014; 60: 940-947
        • Wei Y.
        • Li Y.
        • Yan L.
        • et al.
        Alterations of gut microbiome in autoimmune hepatitis.
        Gut. 2020; 69: 569
        • Lv L.-X.
        • Fang D.-Q.
        • Shi D.
        • et al.
        Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis.
        Environ Microbiol. 2016; 18: 2272-2286
        • Liberg P.
        • Jönsson G.
        Ultrasonography and determination of proteins and enzymes in blood for the diagnosis of liver abscesses in intensively fed beef cattle.
        Acta veterinaria Scand. 1993; 34https://doi.org/10.1186/BF03548219
        • Doré E.
        • Fecteau G.
        • Hélie P.
        • et al.
        Liver abscesses in Holstein dairy cattle: 18 cases (1992-2003).
        J Vet Intern Med. 2007; 21
        • Braun U.
        • Pusterla N.
        • Wild K.
        Ultrasonographic findings in 11 cows with a hepatic abscess.
        Vet Rec. 1995; 137https://doi.org/10.1136/vr.137.12.284